14 research outputs found

    Energy analysis of a fruit drying plant in Adeiso, Ghana

    Get PDF
    The purpose of the project has been to work out recommendations that reduce the energy-related costs and environmental impact of HPW Fresh & Dry Ltd., a fruit drying factory in Ghana. The factory produces electricity with diesel and biogas but also purchases electricity from the national electricity company. Heat for the drying process is produced from biogas, kerosene and solar panels. In the project the energy system was analyzed by measuring production and consumption of heat and electricity. The project results show that the factory can become self-sufficient on heat if the available energy is used more efficient. The production units for both electricity and heat have low efficiencies. Inadequate insulation and sealing contributes to the poor performance of the heat system. The electricity measurements show that several electrical loads are unbalanced and that the three phase cooling machines are not fully utilized. The factory is recommended to invest in a new kerosene boiler and a roaster boiler for combustion of coconut waste. Furthermore, the biogas should be combusted in a boiler instead of in the now used combined heat and power engine (CHP), for improved utilization of the gas. Unused capacity of the three phase cooling machines could replace the less efficient single-phase cooling machines. Moreover, the electrical loads should be balanced and the usage of motors connected to the biogas plant minimized. By insulating pipings and seal leakages, heat losses and the need of cooling will decrease. Finally, the factory is recommended to install automatic regulation of the boilers to avoid over-heating of the storage tank.Syftet med projektet har varit att ta fram rekommendationer för hur HPW Fresh & Dry Ltd., en frukttorkningsfabrik i Ghana, kan minska sina energirelaterade kostnader och sin miljöpåverkan. Fabriken producerar el med diesel och biogas samt köper el från nationella elbolaget. Värme till torkprocessen produceras med biogas, fotogen och solpaneler. I projektet analyserades energisystemet genom att mäta produktion och konsumtion av värme och el. Resultaten från projektet visar att fabriken kan bli självförsörjande på värme om den tillgängliga energin används mer effektivt. Produktionsenheterna för både el och värme generellt har låga verkningsgrader. Bristfällig isolering och tätning bidrar till den låga prestandan i värmesystemet. Elmätningarna visar bland annat att flera elektriska laster är obalanserade samt att det finns outnyttjad kylkapacitet i fabrikens trefasiga kylmaskiner. Fabriken rekommenderas att investera i en ny fotogenvärmepanna samt en värmepanna för förbränning av kokosnötavfall. Vidare bör biogasen förbrännas i en värmepanna istället för i den nu använda kraftvärmemotorn, för att bättre utnyttja gasen. Outnyttjad kylkapacitet på de trefasiga kylmaskinerna kan ersätta mindre effektiva enfasiga kylmaskinerna. Dessutom bör de elektriska lasterna balanseras och driften av elmotorer till biogasanläggningen minimeras. Genom att isolera rör och täta värmeläckage kan värmeförluster och kylbehov minskas. Slutligen rekommenderas fabriken att installera automatisk reglering av värmepannorna för att undvika övervärmning av ackumulatortanken

    Time resolution in environmental assessment of district heating

    No full text
    The demand for environmental assessments on buildings and energy consumption is increasing as well as the energy performance requirements for buildings. At the same time it is increasingly common with self-producers of heat and electricity generation. The main purpose with this master thesis is to investigate how time resolution affects the environmental assessment of energy consumption in office buildings connected to district heating (DH). Environmental assessments were done with both attributional LCA and consequential LCA with system expansion. Fortum´s DH system in Stockholm was analyzed and district heating production was simulated in a Matlab-model. Greenhouse gas (GHG) emissions for the production were calculated. The heat demand of the office Gångaren 16 in Stockholm was simulated in IDA ICE. Thereafter the environmental impact in terms of GHG emissions was calculated with data from the assessment of the DH production. The results show that the highest time resolution that should be used for environmental assessment of energy consumption in buildings connected to DH is daily average values, regardless of LCA perspective. Moreover, sufficient results are achieved with yearly average values with attributional LCA. The results for consequential LCA with system expansion show that daily and yearly average values are not sufficient. Since peak production is temperature dependent rather than time dependent it is recommended that DH peak production is environmental assessed by temperature in future work

    Time resolution in environmental assessment of district heating

    No full text
    The demand for environmental assessments on buildings and energy consumption is increasing as well as the energy performance requirements for buildings. At the same time it is increasingly common with self-producers of heat and electricity generation. The main purpose with this master thesis is to investigate how time resolution affects the environmental assessment of energy consumption in office buildings connected to district heating (DH). Environmental assessments were done with both attributional LCA and consequential LCA with system expansion. Fortum´s DH system in Stockholm was analyzed and district heating production was simulated in a Matlab-model. Greenhouse gas (GHG) emissions for the production were calculated. The heat demand of the office Gångaren 16 in Stockholm was simulated in IDA ICE. Thereafter the environmental impact in terms of GHG emissions was calculated with data from the assessment of the DH production. The results show that the highest time resolution that should be used for environmental assessment of energy consumption in buildings connected to DH is daily average values, regardless of LCA perspective. Moreover, sufficient results are achieved with yearly average values with attributional LCA. The results for consequential LCA with system expansion show that daily and yearly average values are not sufficient. Since peak production is temperature dependent rather than time dependent it is recommended that DH peak production is environmental assessed by temperature in future work

    Svensk frivillig överenskommelse för minskat matsvinn och förluster i livsmedelsbranschen

    No full text
    Tanken med detta projekt var att skapa en bas för en frivillig överenskommelse för att minska matsvinnet i hela livsmedelskedjan. Agenda 2030 och målet 12.3 om halvering av matavfallet är en del av målbilden. Arbetet pågick under 2019 med ambitionen att arbetet sedan ska fortsätta med en faktisk etablering av en svensk frivillig överenskommelse under 2020. Överenskommelsen består av tre olika delar: 1. Mål: Som mål har överenskommelsen antagit Agenda 2030:s mål 12.3. Om förslaget till svenskt miljömål beslutas under 2020 så kommer det utgöra ett viktigt delmål även för överenskommelsen. 2. Datarapportering: kommer att ske från partnerna till överenskommelsen. 3. Arbetsgrupper: kommer att startas med syftet att hitta möjligheter till att minska matsvinnet och förlusterna längs livsmedelskedjan. Den svenska överenskommelsen (Samarbete för minskat matsvinn) lanserades 12 mars 2020. De företag och organisationer som är med i överenskommelsen från start är: Arla, Compass Group AB, Coor, Fazer, Linas matkasse, Livsmedelsindustrierna, LRF, Martin & Servera, Menigo, Norrmejerier, Orkla Foods Sverige, Potatisodlarna, Sodexo, Svenska Köttföretagen och Visita.1.3 miljoner ton matavfall uppstod i Sverige år 2018. Det här är ett slöseri av resurser som dessutom ger utsläpp av växthusgaser. Aktörerna i livsmedelkedjan ser att genom samarbete kan man minska matavfall och livsmedelsförluster. Projektet har tagit fram ett förslag till en svensk modell av en frivillig överenskommelse för att minska matsvinnet i hela livsmedelskedjan. Som en direktföljd av projektet lanserades den 12 mars 2020 en svensk nationell överenskommelse med aktörer från stora delar av livsmedelskedjan; www.ivl.se/sams

    Emissionsfaktorer för bränslen till el- och värmeproduktion

    No full text
    Projektet har tagit fram uppdaterade och aktuella emissionsfaktorer (växthusgasutsläpp) och primärenergifaktorer för biogas, HVO, RME och energitorv som används till el- och värmeproduktion för svenska förhållanden. Emissionsfaktorerna redovisas i g koldioxid-ekvivalenter per MJ bränsle och primärenergi som MJ per MJ bränsle. Resultaten baseras på publicerade data och har valts ut med hjälp av uppsatta kriterier i Miljöfaktaboken 2011. För HVO, RME och biogas redovisas emissionsfaktorer uppdelade på utsläpp från energiomvandling respektive utsläpp från produktion och distribution. För torv tillämpas en metod där torvens nettoutsläpp från hela livscykeln beräknas och visar på ett spann baserat på vilken typ av mark som tas i bruk, efterbehandling av marken samt val av tidsperspektiv. Rapporten visar att den åtgärdsareal som behövs för att kompensera årliga utsläpp av energitorv skördad på en hektar varierar stort. Den minsta arealen som krävs är 1,2–1,4 ha om åtgärden är att återväta tidigare jordbruksmark till sjöliknande förhållanden för att kompensera för utsläpp som uppstått då torv skördats från näringsrik torvmark utan skog. För andra markexempel och åtgärder kan arealen som behövs för att kompensera utsläppen uppgå till 200 ha. Två olika synsätt för miljövärdering av rökgaskondensering lyfts fram i rapporten, ett bokföringsperspektiv och ett konsekvensperspektiv.Rapporten möter ett behov av att utvärdera olika bränslen till el- och värmeproduktion utifrån deras emissionsfaktor (växthusgasutsläpp) och primärenergifaktor. Bränslen som ingår i projektet är biogas, HVO, RME och energitorv. För energitorv analyseras även möjligheten att kompensera för utsläpp genom åtgärder som minskar utsläpp som sker från dränerade torvmarker. Projektet beskriver även tänkbara synsätt för miljövärdering av rökgaskondensering

    Miljövärdering av energilösningar i byggnader

    No full text
    Byggnaders energianvändning påverkar hela energisystemet. Att välja klimatmässigt gynnsamma energilösningar och renoveringsstrategier i byggnadsbeståndet är därför en viktig del i omställningen till ett mer hållbart energisystem. Det har länge saknats praktiska verktyg som bygg- och fastighetsbranschen kan använda för att analysera klimatprestanda för olika energilösningar och som tar hänsyn till interaktionen med energisystemet. Projektet har utvecklat ett verktyg för att beräkna hur en förändring i byggnadens energianvändning (el, värme, kyla, bränslen) påverkar utsläpp av växthusgaser med hänsyn tagen till interaktionen med energisystemet. Verktyget kallas Tidstegen och bygger på en metod som har utvecklats i olika forskningsprojekt. Metoden tar hänsyn till när i tiden byggnaden använder och/eller producerar el, värme och kyla och energisystemens utveckling över tid. Det är konsekvensen av en förändring som analyseras. Detta brukar kallas miljöbedömning i beslutsperspektiv eller konsekvensanalys och är en vedertagen metodik i livscykelanalys. Analysen av energisystemet inkluderar konsekvenser som uppstår både i det lokala fjärrvärmesystemet och i det nordeuropeiska elsystemet. Verktyget innebär att det nu finns ett hjälpmedel för klimatmässigt mer välgrundade beslut vid renovering och nybyggnation av fastigheter. Det kan användas av t.ex. fastighetsägare, konsulter, kommuner eller byggherrar som ett av flera beslutstödsverktyg vid planering av både energieffektiviseringsåtgärder och lösningar för egen produktion av förnybar el, värme eller kyla i eller på byggnaden. I verktyget Tidstegen jämförs energiåtgärder för en byggnad mot en referensbyggnad utan åtgärderna installerade. Verktyget kan även användas av energiföretag för klimatbedömning av exempelvis olika investeringar i fjärrvärmenäten. Konkret går beräkningen till så att användaren matar in energidata (producerad och använd el, värme och kyla) i verktyget, dels för en referensbyggnad, dels för ett antal fallstudier som ska analyseras. Referensbyggnad kan vara befintlig byggnad vid upprustning och basalternativet vid nybyggnad och läggs in av användaren i verktyget. Dessa data bör vara timupplösta. Om byggnaden är kopplad till ett fjärrvärmenät, väljer användaren detta fjärrvärmenät om det finns inlagt i verktyget. Annars är tanken att det lokala energibolaget matar in sina fjärrvärme¬data enligt en särskild metod. Initialt kommer det även att finnas tre typnät med fjärrvärme, litet, medelstort och stort, att välja om det saknas lokala data. Elsystemet (Nordeuropa) är redan inlagt i verktyget med tre framtids¬scenarier och uppdateras centralt. Verktyget beräknar sedan skillnaden i klimatpåverkan mellan varje fallstudie och referensbyggnaden och redovisar resultaten i siffror, diagram och staplar. Beräkningarna beaktar i nuläget enbart energianvändning och energiomvandling under driftsfasen. Energianvändning för produktion av byggnadsmaterial och liknande har inte ingått i projektet. För detta finns andra verktyg, såsom Byggsektorns Miljöberäkningsverktyg BM (IVL, 2019). Det pågår just nu ett flertal aktiviteter där ett verktyg likt Tidstegen skulle vara mycket användbart. Nyttan för bygg- och fastighetsbranschen är bland annat att i tidigt skede kunna planera energilösningar ur klimatperspektiv och att de bättre kan se konsekvenserna av olika val, även om energiomvandlingen sker utanför Sveriges gränser. Energibolagen ser nyttan i att klimatsmarta beslut i bebyggelsen kommer att hjälpa energisystemet att också utvecklas i rätt riktning, och som hjälp behövs verktyg och miljöbedömningsmetoder som Tidstegen. De faktiska konsekvenserna av en åtgärd är alltid osäkra. Tidstegen uppskattar konsekvenserna med hjälp av modeller, vilka alltid är förenklingar av den komplexa verkligheten. Resultat från verktyget Tidstegen kommer också av vissa aktörer troligen uppfattas som kontroversiella och resultaten är inte alltid intuitiva. Den här typen av systemeffekter bör hellre ses som indikativa och användas för att få ökad förståelse för de system som byggnaden är kopplad till, snarare än att räkna exakt vad olika energilösningar innebär för klimatpåverkan. För bred användning av verktyget krävs samtidigt att det är så användarvänligt och buggfritt som möjligt. Nästa steg är därför att testa verktyget i några pilotprojekt. I takt med att ny kunskap och nya data genereras kommer verktyget också att behöva uppdateras för att inte bli inaktuellt. Efter att pilotprojekten genomförts kommer verktyget att finnas tillgängligt på IVL:s hemsida.The energy use of buildings affects the entire energy system. Choosing climate-friendly energy solutions and renovation strategies in the building stock is thus an important part of the transition to a more sustainable energy system. The construction industry and the real-estate sector have been lacking practical tools to assess the climate implications of different energy solutions in buildings, accounting for the interaction with the energy system. We developed a tool for calculating the climate impact of a change in a new or rebuilt building, taking into account the interaction between the building and the overall energy system, regarding greenhouse gas emissions. The tool is called Tidstegen and is based on a methodology that has been developed in several research projects. The methodology takes into account the point in time when the building uses and/or produces electricity, heat and cooling, and also the development of the energy systems over time. It analyzes the consequences of changes. This is usually referred to as an environmental assessment from the decision perspective or consequential assessment. It is an established approach in life cycle assessment. The calculations include consequences that occur in the local district heating system and also in the North European electricity system. The Tidstegen tool allows for making more informed decisions when renovating and building new properties. It can be used by, e.g., property owners, consultants, municipalities or builders as one of several decision-support tools when making decisions on energy efficiency measures or investments to produce renewable electricity, heating or cooling at, on, or in the building. In the tool Tidstegen you compare a building with energy measures to a reference building, which is similar but without the measures being installed. The Tidstegen tool can also be used by energy companies for the climate assessment of, for example, different investments in their district-heating networks. The user of the tool feeds it with energy data (on produced and used electricity, heating and cooling) for the reference building and for each of the case studies to be analyzed. The reference building, which could be a current building in the case of retrofitting or a base alternative in the case of new construction, is entered by the user. Energy data should have a high time resolution, where hourly data is preferred. If the building is connected to a district-heating network, the user selects this district-heating system if it is available in the tool. Otherwise, the idea is that the local energy company adds new district-heating data in the tool according to a specified method. Initially there will be three modelled district-heating grids available in the tool, a small, a middle-sized and a large, if local data is not available. Data on the electricity system (North European) is already in the tool with three future scenarios that are updated by the coordinators of the tool. The tool then calculates the difference in climate impact between each case study and the reference building and presents the results in numbers, diagrams and bars. The calculations currently only consider energy use and energy conversion during the operational phase. Energy used to produce building materials has not been included in the project. For this there are other tools available. There are currently several activities where a tool like Tidstegen would be very useful. The benefits for the construction and real estate industry are, among other things, that they are able to plan energy solutions from a climate perspective at an early stage and that they can better see the consequences of different choices, even if the consequences of energy conversion occur beyond the borders of Sweden. Energy companies see the benefit in that climate-smart decisions in buildings will help the energy system to develop in a sustainable direction. To accomplish that, tools and environmental assessment methods like the Tidstegen are needed. The actual consequences of a measure are always uncertain. Tidstegen estimates the consequences with models, which are always simplifications of the complex reality. Results from the tool Tidstegen will also probably be considered controversial for some, and the results are not always intuitive. This type of system effects should rather be seen as indicative and used for increased understanding of the systems to which the building is connected, rather than counting the exact climate impact for different energy solutions. A widespread use of the tool, however, requires that it is user-friendly and free of bugs. Our next step is therefore to test the tool in several pilot projects. As new knowledge and new data are generated, the tool will also need to be updated to avoid becoming outdated. After the pilot projects have been carried out the tool will be available on IVL:s webpage.Projektet har utvecklat ett verktyg för att beräkna hur en förändring i byggnadens energianvändning påverkar utsläpp av växthusgaser med hänsyn tagen till interaktionen med energisystemet. Verktyget innebär att det nu finns ett hjälpmedel för klimatmässigt mer välgrundade beslut vid renovering och nybyggnation av fastigheter. Det kan användas av till exempel fastighetsägare, konsulter, kommuner eller byggherrar som ett av flera beslutstödsverktyg vid planering av både energieffektiviseringsåtgärder och lösningar för egen produktion av förnybar el, värme eller kyla i eller på byggnaden

    Hur når vi en fossilfri avfallsförbänning? - En scenarioanalys

    No full text
    The Swedish Riksdag has decided that Sweden by 2045 should not have any net greenhouse gas emissions to the atmosphere. To acheive this, waste incineration also needs to be fossil-free. How is Sweden going to get there? Today, there are a cuntless number of products that consist entirely or partly of fossil plastics and are today energy recovered in Sweden's waste incineration plants. Changing this requires powerful measures with consequences for, for example, socioeconomics, law and regulations for trade and recycling of plastics. The purpose of this report is to analyse various possible scenarios to acheieve the goal of "a fossil-free wast incineration". The different scenarios have different system boundaries and are based on different principles, but all in their own way reaches fossil-free wast incineration. Initially seven different scenarios are discussed in the report. Of these, four scenarios have been analysed somewhat deeper. The scenario analysis is qualitative and is intended to provide an overall assessment of feasibility and potential to achieve fossil-free waste incineration. The anlysis has been conducted regarding the criteria for socioeconomic costs; Reduction of fossil emissions globally; Need for technology development and innovation as well as legal feasibility.IVL har på uppdrag åt Avfall Sverige utfört en studie där olika scenarier för att nå en fossilfri avfallsförbränning har analyserats

    Miljövärdering av energilösningar i byggnader (etapp 2)

    No full text
    Det ställs allt högre krav på byggnaders energiprestanda och i takt med detta ökar efterfrågan på miljövärdering av byggnader och deras energilösningar. I detta projekt vidareutvecklas en metodik för värdering av byggnaders energianvändning ur miljösynpunkt (metodens grundversion utvecklades i ”etapp 1” av projektet). Vi benämner metoden ”Tidstegsmetoden”. Tidstegsmetoden avser att analysera miljökonsekvenserna av byggnaders energilösningar. Metoden ska visa på effekterna av olika val och kunna ge underlag till beslut vid planering av renovering och nybyggnation. Därför är utgångspunkten att analysera systemkonsekvenser av förändrad energianvändning. Produktion av el-, fjärrvärme-, och fjärrkyla kan vara förknippade med stora skillnader i miljöpåverkan beroende på vilken tid som avses; t.ex., om det är sommar eller vinter, om det är nutid eller framtid. För att på ett representativt sätt kunna bedöma miljökonsekvensen av en förändrad energianvändning i en byggnad är därför tidsaspekten central. Den presenterade metoden hanterar därför två olika tidsdimensioner. Den ena avser den framtida utvecklingen av energisystemet – från nu och ca 20 år framåt i tiden. Den andra dimensionen är tidsupplösning över året, som avser att fånga variationer över säsonger, månader, dygn och timmar. Med konsekvens- och tidsperspektivet i fokus, inkluderar tillvägagångssättet: beräkning av byggnadens energianvändning för aktuella energiåtgärder; bestämning av miljövärdesfaktorer för en förändrad användning av bränslen, fjärrvärme, fjärrkyla och el; och beräkning miljöpåverkan av de aktuella energiåtgärderna baserat på de beräknade förändringarna i energianvändning och de fastställda miljövärdesfaktorerna. För att bättre täcka in de många osäkerheter som är förknippade med en framåtblickande analys kopplas beräkningarna till ett antal kontrasterande scenarioförutsättningar. Detta ger ett resultatspann för miljöpåverkan av de studerade energilösningarna. För att exemplifiera metoden presenteras i rapporten ett antal kvantitativa exempel. I dessa beräknas klimatpåverkan (utsläpp av CO2e) av olika energieffektiviseringsåtgärder i ett flerfamiljshus byggt under miljonprogrammet. Den principiella beräkningsgången går också att applicera på andra miljöaspekter såväl som för andra typer av byggnader och energiåtgärder. I rapporten görs beräkningarna för tre olika typer av fjärrvärmenät, samt för olika kontrasterande scenarier, bland annat kopplat till elsystemets utveckling. Sammantaget har projektet resulterat i en metod som länkar ihop tidsupplöst miljövärdering för fjärrvärme, fjärrkyla, och el med ett framåtblickande konsekvensperspektiv. Scenarioangreppssättet bidrar till att hantera in en del av de osäkerheter som är förknippade med framtidsstudier. Den utvecklade metoden kan i fortsatt tillämpning bidra till miljömässigt mer välgrundade beslut vid renovering och nybyggnation av fastigheter.Det ställs allt högre krav på byggnaders energiprestanda och i takt med detta ökar efterfrågan på miljövärdering av byggnader och deras energilösningar. I detta projekt vidareutvecklas en metodik för värdering av byggnaders energianvändning ur miljösynpunkt (metodens grundversion utvecklades i ”etapp 1” av projektet). Vi benämner metoden ”Tidstegsmetoden”. Tidstegsmetoden avser att analysera miljökonsekvenserna av byggnaders energilösningar. Metoden ska visa på effekterna av olika val och kunna ge underlag till beslut vid planering av renovering och nybyggnation. Därför är utgångspunkten att analysera systemkonsekvenser av förändrad energianvändning. Produktion av el-, fjärrvärme-, och fjärrkyla kan vara förknippade med stora skillnader i miljöpåverkan beroende på vilken tid som avses; t.ex., om det är sommar eller vinter, om det är nutid eller framtid. För att på ett representativt sätt kunna bedöma miljökonsekvensen av en förändrad energianvändning i en byggnad är därför tidsaspekten central. Den presenterade metoden hanterar därför två olika tidsdimensioner. Den ena avser den framtida utvecklingen av energisystemet – från nu och ca 20 år framåt i tiden. Den andra dimensionen är tidsupplösning över året, som avser att fånga variationer över säsonger, månader, dygn och timmar. Med konsekvens- och tidsperspektivet i fokus, inkluderar tillvägagångssättet: beräkning av byggnadens energianvändning för aktuella energiåtgärder; bestämning av miljövärdesfaktorer för en förändrad användning av bränslen, fjärrvärme, fjärrkyla och el; och beräkning miljöpåverkan av de aktuella energiåtgärderna baserat på de beräknade förändringarna i energianvändning och de fastställda miljövärdesfaktorerna. För att bättre täcka in de många osäkerheter som är förknippade med en framåtblickande analys kopplas beräkningarna till ett antal kontrasterande scenarioförutsättningar. Detta ger ett resultatspann för miljöpåverkan av de studerade energilösningarna. För att exemplifiera metoden presenteras i rapporten ett antal kvantitativa exempel. I dessa beräknas klimatpåverkan (utsläpp av CO2e) av olika energieffektiviseringsåtgärder i ett flerfamiljshus byggt under miljonprogrammet. Den principiella beräkningsgången går också att applicera på andra miljöaspekter såväl som för andra typer av byggnader och energiåtgärder. I rapporten görs beräkningarna för tre olika typer av fjärrvärmenät, samt för olika kontrasterande scenarier, bland annat kopplat till elsystemets utveckling. Sammantaget har projektet resulterat i en metod som länkar ihop tidsupplöst miljövärdering för fjärrvärme, fjärrkyla, och el med ett framåtblickande konsekvensperspektiv. Scenarioangreppssättet bidrar till att hantera in en del av de osäkerheter som är förknippade med framtidsstudier. Den utvecklade metoden kan i fortsatt tillämpning bidra till miljömässigt mer välgrundade beslut vid renovering och nybyggnation av fastigheter.Det ställs allt högre krav på byggnaders energiprestanda och i takt med detta ökar efterfrågan på miljövärdering av byggnader och deras energilösningar. I detta projekt vidareutvecklas en metodik för värdering av byggnaders energianvändning ur miljösynpunkt (metodens grundversion utvecklades i ”etapp 1” av projektet). Vi benämner metoden ”Tidstegsmetoden”

    Miljövärdering av energilösningar i byggnader (etapp 2)

    No full text
    Det ställs allt högre krav på byggnaders energiprestanda och i takt med detta ökar efterfrågan på miljövärdering av byggnader och deras energilösningar. I detta projekt vidareutvecklas en metodik för värdering av byggnaders energianvändning ur miljösynpunkt (metodens grundversion utvecklades i ”etapp 1” av projektet). Vi benämner metoden ”Tidstegsmetoden”. Tidstegsmetoden avser att analysera miljökonsekvenserna av byggnaders energilösningar. Metoden ska visa på effekterna av olika val och kunna ge underlag till beslut vid planering av renovering och nybyggnation. Därför är utgångspunkten att analysera systemkonsekvenser av förändrad energianvändning. Produktion av el-, fjärrvärme-, och fjärrkyla kan vara förknippade med stora skillnader i miljöpåverkan beroende på vilken tid som avses; t.ex., om det är sommar eller vinter, om det är nutid eller framtid. För att på ett representativt sätt kunna bedöma miljökonsekvensen av en förändrad energianvändning i en byggnad är därför tidsaspekten central. Den presenterade metoden hanterar därför två olika tidsdimensioner. Den ena avser den framtida utvecklingen av energisystemet – från nu och ca 20 år framåt i tiden. Den andra dimensionen är tidsupplösning över året, som avser att fånga variationer över säsonger, månader, dygn och timmar. Med konsekvens- och tidsperspektivet i fokus, inkluderar tillvägagångssättet: beräkning av byggnadens energianvändning för aktuella energiåtgärder; bestämning av miljövärdesfaktorer för en förändrad användning av bränslen, fjärrvärme, fjärrkyla och el; och beräkning miljöpåverkan av de aktuella energiåtgärderna baserat på de beräknade förändringarna i energianvändning och de fastställda miljövärdesfaktorerna. För att bättre täcka in de många osäkerheter som är förknippade med en framåtblickande analys kopplas beräkningarna till ett antal kontrasterande scenarioförutsättningar. Detta ger ett resultatspann för miljöpåverkan av de studerade energilösningarna. För att exemplifiera metoden presenteras i rapporten ett antal kvantitativa exempel. I dessa beräknas klimatpåverkan (utsläpp av CO2e) av olika energieffektiviseringsåtgärder i ett flerfamiljshus byggt under miljonprogrammet. Den principiella beräkningsgången går också att applicera på andra miljöaspekter såväl som för andra typer av byggnader och energiåtgärder. I rapporten görs beräkningarna för tre olika typer av fjärrvärmenät, samt för olika kontrasterande scenarier, bland annat kopplat till elsystemets utveckling. Sammantaget har projektet resulterat i en metod som länkar ihop tidsupplöst miljövärdering för fjärrvärme, fjärrkyla, och el med ett framåtblickande konsekvensperspektiv. Scenarioangreppssättet bidrar till att hantera in en del av de osäkerheter som är förknippade med framtidsstudier. Den utvecklade metoden kan i fortsatt tillämpning bidra till miljömässigt mer välgrundade beslut vid renovering och nybyggnation av fastigheter.Det ställs allt högre krav på byggnaders energiprestanda och i takt med detta ökar efterfrågan på miljövärdering av byggnader och deras energilösningar. I detta projekt vidareutvecklas en metodik för värdering av byggnaders energianvändning ur miljösynpunkt (metodens grundversion utvecklades i ”etapp 1” av projektet). Vi benämner metoden ”Tidstegsmetoden”. Tidstegsmetoden avser att analysera miljökonsekvenserna av byggnaders energilösningar. Metoden ska visa på effekterna av olika val och kunna ge underlag till beslut vid planering av renovering och nybyggnation. Därför är utgångspunkten att analysera systemkonsekvenser av förändrad energianvändning. Produktion av el-, fjärrvärme-, och fjärrkyla kan vara förknippade med stora skillnader i miljöpåverkan beroende på vilken tid som avses; t.ex., om det är sommar eller vinter, om det är nutid eller framtid. För att på ett representativt sätt kunna bedöma miljökonsekvensen av en förändrad energianvändning i en byggnad är därför tidsaspekten central. Den presenterade metoden hanterar därför två olika tidsdimensioner. Den ena avser den framtida utvecklingen av energisystemet – från nu och ca 20 år framåt i tiden. Den andra dimensionen är tidsupplösning över året, som avser att fånga variationer över säsonger, månader, dygn och timmar. Med konsekvens- och tidsperspektivet i fokus, inkluderar tillvägagångssättet: beräkning av byggnadens energianvändning för aktuella energiåtgärder; bestämning av miljövärdesfaktorer för en förändrad användning av bränslen, fjärrvärme, fjärrkyla och el; och beräkning miljöpåverkan av de aktuella energiåtgärderna baserat på de beräknade förändringarna i energianvändning och de fastställda miljövärdesfaktorerna. För att bättre täcka in de många osäkerheter som är förknippade med en framåtblickande analys kopplas beräkningarna till ett antal kontrasterande scenarioförutsättningar. Detta ger ett resultatspann för miljöpåverkan av de studerade energilösningarna. För att exemplifiera metoden presenteras i rapporten ett antal kvantitativa exempel. I dessa beräknas klimatpåverkan (utsläpp av CO2e) av olika energieffektiviseringsåtgärder i ett flerfamiljshus byggt under miljonprogrammet. Den principiella beräkningsgången går också att applicera på andra miljöaspekter såväl som för andra typer av byggnader och energiåtgärder. I rapporten görs beräkningarna för tre olika typer av fjärrvärmenät, samt för olika kontrasterande scenarier, bland annat kopplat till elsystemets utveckling. Sammantaget har projektet resulterat i en metod som länkar ihop tidsupplöst miljövärdering för fjärrvärme, fjärrkyla, och el med ett framåtblickande konsekvensperspektiv. Scenarioangreppssättet bidrar till att hantera in en del av de osäkerheter som är förknippade med framtidsstudier. Den utvecklade metoden kan i fortsatt tillämpning bidra till miljömässigt mer välgrundade beslut vid renovering och nybyggnation av fastigheter.Det ställs allt högre krav på byggnaders energiprestanda och i takt med detta ökar efterfrågan på miljövärdering av byggnader och deras energilösningar. I detta projekt vidareutvecklas en metodik för värdering av byggnaders energianvändning ur miljösynpunkt (metodens grundversion utvecklades i ”etapp 1” av projektet). Vi benämner metoden ”Tidstegsmetoden”

    Strategier för energieffektivisering ur ett fjärrvärmeperspektiv

    No full text
    Hur kan det integrerade fjärrvärme- och byggnadssystemet kostnadseffektivt möta mål om minskade CO2-utsläpp och fossilbränsleutfasning? Hur påverkas fjärrvärmeproduktionssystemet av olika teknikval för energieffektivisering i stadens byggnader? Det pågår just nu omfattande renoveringar av befintlig bebyggelse i Sverige. I samband med dessa renoveringar sker även energibesparande åtgärder av byggnadernas el- och värmebehov. Energieffektiviseringsåtgärder har effekter på såväl tillförsel- som användarsidan av energisystemet. Ett systemperspektiv är därför av stor vikt. Denna studies övergripande fokus är att med ett integrerat systemperspektiv på produktionssidan och användarsidan i en stads fjärrvärmesystem undersöka vägar för att nå framtida miljömål. Analysen använder ett fallstudie- och modellbaserat angreppssätt där Malmö stads fjärrvärmesystem och byggnadsbestånd ligger till grund. Arbetet inkluderar en kartläggning av byggnadsbestånd och fjärrvärmeproduktion i Malmö, identifiering av teknikåtgärder inklusive renoveringspaket för energieffektivisering, energisimuleringar på byggnadsnivå, utveckling av energisystemmodell för tillförsel- och användarled i fjärrvärmesystemet och, slutligen, modellkörningar och analys av resultat. Den utvecklade energisystemmodellen över Malmös energisystem, TIMES_Malmö, bygger på det internationellt etablerade modellgeneratorn TIMES. Modellen är en optimeringsmodell som beräknar den över tid kostnadsoptimala utvecklingen av det studerade systemet. Studien har en långsiktig tidshorisont och har 2050 som slutår för analysen. Resultaten visar bland annat att hur stadens miljömål definieras har en viktig betydelse för vilka teknikval och investeringar som är kostnadseffektiva i systemet. Miljömål där stadens påverkan på CO2-utsläpp utanför den egna stadens gränser inkluderas ger ett annat utfall än om fokus för miljömålen är på utfasning av fossila bränslen inom staden. Mål om ”fossilfrihet”, som fokuserar på minskning av fossila bränslen inom staden, leder i modellresultaten till en hög andel värmepumpar i fjärrvärmeproduktionen. Mål om ”CO2-neutralitet”, som tar hänsyn till effekter på elsystemet i det för staden omgivande systemet (marginalel), gynnar istället en högre andel kraftvärmeproduktion i fjärrvärmeproduktionen. Enklare teknikåtgärder för energieffektivisering i byggnadsbeståndet visar ofta samhällsekonomisk kostnadseffektivitet. Omfattande klimatskalsåtgärder ger en större energibesparing, men medför också en högre systemkostnad. Energieffektiviseringsåtgärder som minskar el- och värmeanvändning under årets kallare del då den totala efterfrågan är hög ger fördelar ur ett systemperspektiv. Åtgärder som främst minskar behovet av fjärrvärmens baslastproduktion ger i många fall begränsade fördelar ur ett systemperspektiv.Hur kan det integrerade fjärrvärme- och byggnadssystemet kostnadseffektivt möta mål om minskade CO2-utsläpp och fossilbränsleutfasning? Hur påverkas fjärrvärmeproduktionssystemet av olika teknikval för energieffektivisering i stadens byggnader? Det pågår just nu omfattande renoveringar av befintlig bebyggelse i Sverige. I samband med dessa renoveringar sker även energibesparande åtgärder av byggnadernas el- och värmebehov. Energieffektiviseringsåtgärder har effekter på såväl tillförsel- som användarsidan av energisystemet. Ett systemperspektiv är därför av stor vikt. Denna studies övergripande fokus är att med ett integrerat systemperspektiv på produktionssidan och användarsidan i en stads fjärrvärmesystem undersöka vägar för att nå framtida miljömål. Analysen använder ett fallstudie- och modellbaserat angreppssätt där Malmö stads fjärrvärmesystem och byggnadsbestånd ligger till grund. Arbetet inkluderar en kartläggning av byggnadsbestånd och fjärrvärmeproduktion i Malmö, identifiering av teknikåtgärder inklusive renoveringspaket för energieffektivisering, energisimuleringar på byggnadsnivå, utveckling av energisystemmodell för tillförsel- och användarled i fjärrvärmesystemet och, slutligen, modellkörningar och analys av resultat. Den utvecklade energisystemmodellen över Malmös energisystem, TIMES_Malmö, bygger på det internationellt etablerade modellgeneratorn TIMES. Modellen är en optimeringsmodell som beräknar den över tid kostnadsoptimala utvecklingen av det studerade systemet. Studien har en långsiktig tidshorisont och har 2050 som slutår för analysen. Resultaten visar bland annat att hur stadens miljömål definieras har en viktig betydelse för vilka teknikval och investeringar som är kostnadseffektiva i systemet. Miljömål där stadens påverkan på CO2-utsläpp utanför den egna stadens gränser inkluderas ger ett annat utfall än om fokus för miljömålen är på utfasning av fossila bränslen inom staden. Mål om ”fossilfrihet”, som fokuserar på minskning av fossila bränslen inom staden, leder i modellresultaten till en hög andel värmepumpar i fjärrvärmeproduktionen. Mål om ”CO2-neutralitet”, som tar hänsyn till effekter på elsystemet i det för staden omgivande systemet (marginalel), gynnar istället en högre andel kraftvärmeproduktion i fjärrvärmeproduktionen. Enklare teknikåtgärder för energieffektivisering i byggnadsbeståndet visar ofta samhällsekonomisk kostnadseffektivitet. Omfattande klimatskalsåtgärder ger en större energibesparing, men medför också en högre systemkostnad. Energieffektiviseringsåtgärder som minskar el- och värmeanvändning under årets kallare del då den totala efterfrågan är hög ger fördelar ur ett systemperspektiv. Åtgärder som främst minskar behovet av fjärrvärmens baslastproduktion ger i många fall begränsade fördelar ur ett systemperspektiv.Det pågår just nu omfattande renoveringar av befintlig bebyggelse, särskilt inom de så kallade miljonprogramsområdena i Sverige. I samband med dessa renoveringar sker även energibesparande åtgärder av byggnadernas el- och värmebehov. Denna studie använder ett integrerat systemperspektiv för att undersöka hur byggnaden, fjärrvärmesystemet, och system för el- och bränsletillförsel hänger samman och påverkar varandra
    corecore